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ABSTRACT: Borno and Yobe States are among 

the states that are have affected by various 

infectious diseases based on the analysis of the data 

obtained in this study, one can safely conclude that 

the Z – test is the smallest, most powerful and 

robust p – values among all the test especially for 

infectious diseases data that occur due to some 

change in atmospheres or environmental factors. 
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I. INTRODUCTION 
World health organisation report (2003) 

Infectious diseases remain key agents of the 

debilitating poverty afflicting so much of the world 

today. Each year these diseases kill almost 9 

million people, many of them children under five, 

and they also cause enormous burdens through life-

long disability. Stepping up research into their 

causes and how to effectively treat them and 

prevent them from spreading could have an 

enormous impact on efforts to lift people out of 

poverty and to build a better world for future 

generations. 

Most emerging infectious disease 

pathogens in humans cross from their natural 

zoonoticreservoir to human populations where 

early mutated, reasserted or recombined forms 

begin tospread from person-to-person [Antia et al. 

(2003)]. Examples include 

humanimmunodeficiency virus, monkey pox, 

severe acute respiratory syndrome and pandemic 

influenza. Currently, a highly pathogenic avian 

influenza strain (H5N1) has been spreadingfrom 

poultry to humans, mostly in Southeast Asia, with 

possible limited human-to-humanspread through 

close contact in Indonesia [Butler (2006)]. A 

concern is that this virus couldcause a large scale 

pandemic as it becomes more adapted to human-to-

human transmission.Real-time surveillance 

provides limited information on small clusters of 

human cases in termsof symptom onset times and 

physical location. It is critical to answer two 

questions in real time: 1. Is the infectious agent 

spreading from person to person? and 2. If it is, 

how transmissible is it? The first question is novel 

and, to our knowledge, has not been addressed in 

the statistical literature. The second question is an 

estimation problem, and various statistical methods 

using household data are applicable, such as the 

models based on observed final infection status 

[Longini and Koopman (1982), Becker and Hasofer 

(1997), and Halloran (2006). The statistical 

questions hinge on inference about the 

transmissibility of the infectious agent. The basic 

reproductive number, R0, is the fundamental 

measure of the transmissibility of an emerging 

infectious agent. Given that the emerging infectious 

agent is transmissible, estimates of R0 will 

generally be small and are not very informative. 

Although statisticians have discussed 

asymptotic tests for a limited set of scenarios [Feng 

and McCulloch (1992)], more often such an 

asymptotic null distribution is not available for a 

specific case. Furthermore, the validity of 

asymptotic tests depends on relatively large sample 

sizes, which may compromise the power of such 

tests to detect person-to-person transmission if 

applied to a small sample size, such as those 

generated by avian influenza. These challenges 

motivate our investigation in exact rather than 

asymptotic testing methods. those based on a 

discrete-time sequence of symptom onset [Rampey 

et al. (1992), Yang, Longini and Halloran (2006)]. 

Robust statistics assesses the changes in 

estimates due to small changes in basic 

assumptions. Olive (2005) defined robust statistics 

as a method that is designed to perform well when 

the shape of the true underlying model deviates 

slightly from the assumed parametric model, such 

as assumptions of normality. Robust statistical 

methods therefore, have been developed for many 
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common problems, such as estimating location, 

scale, and regression parameters (Stigler, 2010; 

Bosse et al, 2016). One motivation is to produce 

statistical methods that are not unduly affected by 

the violation of the normality assumption; another 

motivation is to provide methods with good 

performance when there are small departures from 

parametric. 

The beginning of robust statistics dates 

back to the eighteenth century, when the first rule 

for rejection of outliers was developed (Filzmoser 

and Rousseeuw, 2005). statistics, asymptotic theory 

is a framework for assessing properties 

of estimators and statistical tests. Where, it is 

assumed that as the sample size n increases, the 

properties of estimators and tests can be evaluated 

in the limit as n → ∞. In practice, limit evaluation 

is treated as being approximately valid for large 

finite sample sizes. Most statistical problems begin 

with a dataset of size n. The asymptotic theory 

proceeds by assuming that it is possible (in 

principle) to keep collecting additional data, so that 

the sample size grows infinitely, i.e. n → ∞. Under 

this assumption, many results can be obtained that 

are unavailable for samples of finite size, for 

example the lawoflargenumbers which states that 

for a sequence of independentand identically 

distributed (IID) random variables X1, X2, …, if 

one value is drawn from each random variable and 

the average of the first n values is computed as Xn, 

then the Xn converge in probability to the 

population mean E[Xi] as n → ∞ *(Balakrishnan et 

al, 2001). 

A test could be robust to data that violate 

normality assumption or data that contain 

outlier.Outliers are observations that stand too 

different from others in a set of observations. When 

present in a data set, they affect both descriptive 

and inferential statistics (Kayode et al, 2016). This 

study therefore, studies the asymptotic and 

robustness of one sample test statistics to outliers 

and non-normality so as to know the appropriate 

one to test hypothesis about the population 

parameter when outliers are present in a particular 

distribution family. The study examines the 

robustness and asymptotic property of four tests (t, 

z, sign and Wilcoxon tests), because they are the 

commonly used test for one sample location to 

examine which of them is more robust to non-

normal data and data containing outliers. It is well 

known that classical tests for comparing location 

like means and medians are very sensitive to 

departures from normality, therefore it is 

considered in this study, some hypothesis tests in 

situations where the data come from a probability 

distribution whose underlying distribution may be 

normal or non-normal (e.g. uniform, exponential, 

Gamma), with and without outliers and different 

sample sizes are considered for each scenario of 

data set from each diseases. 

Infectious diseases emerging throughout 

history have included some of the most feared 

plagues of the past. New infections continue to 

emerge today, while many of the old plagues are 

with us still. These are global problems (William 

Foege, former CDC director, terms them “global 

infectious disease threats”). As demonstrated by 

influenza epidemics, under suitable circumstances, 

a new infection first appearing anywhere in the 

world could traverse entire continents within days 

or weeks. We can define as “emerging” infections 

that have newly appeared in the population, or have 

existed but are rapidly increasing in incidence or 

geographic range (Morse S.S,&Schluederberg 

A,1990). Recent examples of emerging diseases in 

various parts of the world include HIV/AIDS; 

classic cholera in South America and Africa; 

cholera due to Vibrio choleraeO139; Rift Valley 

fever; hantavirus pulmonary syndrome; Lyme 

disease; and hemolytic uremic syndrome, a 

foodborne infection caused by certain strains of 

Escherichia coli (in the United States, serotype 

O157:H7). 

Robustness statistics assesses the changes 

in estimates due to small changes in the basic 

assumptions and to create new estimates that are 

insensitive to small changes in some of the 

assumptions.In statistics it is conventional to 

assume that observations are normally distributed. 

The entire statistical framework is based on this 

assumption and if this assumption is violated the 

inference breaks down. For this reason, it is 

essential to check or test whether this assumption 

hold before any statistical analysis of data. Many 

researchers do not recognize the importance of test 

of assumption before it is used. For instance, t-test 

has some assumptions (normality, 

homoscedasticity and continuity of the data set). If 

any of these assumptions are violated, may lead to 

its insufficient and a more robust (good) test can be 

used to obtain valid result. In all branches of 

knowledge, it is necessary to apply statistical 

methods in a sensible way. The most commonly 

used statistical methods are correlation, regression 

and experimental design. But all of them are based 

on one basic assumption, that the observation 

follows normal (Gaussian) distribution (Das and 

Imon, 2016). So, it is assumed that the population 

from where the sample is drawn is normally 

distributed. For this reason, the inferential methods 

require checking the normality assumption. The 

purpose of this work is to provide an asymptotic 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/Sample_size
https://en.wikipedia.org/wiki/Sample_size
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability
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theory of robustness to non-normal which shows 

when the various selection procedures are robust as 

the sample sizes increase. 

 

II. MATERIAL METHOD 
this study investigating the robustness of 

one sample test statistics to non-normal (skewed 

distributions) and outliers using both power and 

type I error as criteria. This will enable us to know 

the appropriate test for testing hypothesis about the 

population mean when infectious diseases data are 

non-normal and or contain outliers. The tests 

considered in this study are t-test and z-test under 

parametric test, while Wilcoxon signed rank and 

sign test under the nonparametric test through 

procedures from normal, uniform, exponential and 

gamma distributions. 

 

III. TABLE AND DISCUSSION 
The analysis of 54 weeks of four selected 

infectious diseases data COVID19, Measles, 

Meningitis and Cholera of Borno and Yobe state 

for the four tests z, t, sign and Wilcoxon sign rank 

test under deference sample sizes small, medium 

and large which are 15, 25 and >30 with extreme 

values (outlies) and their p – values are recorded 

below 

 

Table 1. COVID19 P – values of the four tests for various sample sizes 

Test 

Sample size 

Z t Sign Wilcoxon 

15 2.2e
 - 16 

0.014 1.2e
 – 04

 0.001 

25 2.2e
 - 16

 2.2e
 – 05

 1.192e
 - 07

 1.933e
 - 05

 

>30 2.2e
 - 16

 1.628e
 – 08

 1.776e
 - 15

 7.759e
 – 10

 

The table1 shows that the p – values of the four tests for all the sample size small, medium and large Z < sign < t 

< Wilcoxon. 

 

Table2. Measles P – values of the four tests for various sample sizes 

Test 

Sample size 

Z t Sign Wilcoxon 

15 2.2e
 - 16 

7.593e
 – 04

 6.104e
 – 05

 7.247e
 - 04

 

25 2.2e
 - 16

 1.133e
 – 04

 5.96e
 – 08

 1.3e
 - 05

 

>30 2.2e
 - 16

 4.137e
 – 08

 2.22e
 - 16

 2.444e
 – 10

 

The table2 shows that the p – values of the four tests for all the sample size small, medium and large which is 

15, 25, and >30 the test is Z < sign < t < Wilcoxon. 

 

Table3. Meningitis P – values of the four tests for various sample sizes 

Test 

Sample size 

Z t Sign Wilcoxon 

15 2.2e
 - 16 

0.2131 3.906e
 – 03

 7.914e
 - 03

 

25 2.2e
 - 16

 0.1417 3.052e
 – 05

 3.931e
 – 04

 

>30 2.2e
 - 16

 0.07709 2.98e
 – 08

 5.973e
 – 06

 

The above table3 also shows that the p – values of the four tests for all the sample size small, medium and large 

which is 15, 25, and >30 the test is Z < sign < t < Wilcoxon. 

 

Table4. Cholera P – values of the four tests for various sample sizes 

Test 

Sample size 

Z t Sign Wilcoxon 

15 0.8614
 

0.0701 4.883e
 – 03

 2.516e
 - 03

 

25 0.1247 0.03109 3.815e
 – 06

 1.419e
 – 04

 

>30 0.0329 0.0474 1.164e
 - 10

 3.802e
 – 07

 

 

Table4 shows that the p – values of the 

four tests for the sample size of 15 is Z > sign > t > 

Wilcoxon, for the sample size of 25 is Z > t > 

Wilcoxon > sign and for sample size of >30 is t > Z 

> Wilcoxon > Sign. 

P – values of the four test with various sample size 

after removing extreme values (outlies) from the 

data set for the four selected diseases 
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Table 5 COVID19 p – values of the four tests with various sample sizes after removing outlies 

Test 

Sample size 

COVID19 

Z                                  t                     WilcoxonSign                         

15 2.2e
 - 16 

2.902e
 – 04

 1.221e
 – 04

 1.088e
 - 03

 

25 2.2e
 - 16

 6.014e
 - 06

 1.92e
 – 07

 1.933e
 – 05

 

>30 2.2e
 - 16

 1.059e
 - 09

 2.276e
 - 13

 1.155e
 – 08

 

The table 5 above shows that the p – values for the sample sizes of 15 is Z < Sign < Wilcoxon < t, for sample 

sizes 25 and > 30 is Z < Sign < t < Wilcoxon. 

 

Table 6 Measles p – values of the four tests with various sample sizes after removing outlies 

Test 

Sample size 

Measles 

Z  t                    Sign                  Wilcoxon 

15 2.2e
 – 16 

3.893
– 05

 6.104e
 – 05

 7.211e
 – 04

 

25 2.2e
 – 16

 4.139e
 – 06

 5.96e
 – 08

 1.296e
 – 05

 

>30 2.2e
 – 16

 3.896e
 – 11

 1.144e
 – 13

 7.832e
 – 09

 

Table 6 above shows that the p – values for the sample sizes of 15 is Z < t < Wilcoxon < Sign for sample sizes 

25 and > 30 is Z < Sign < t < Wilcoxon. 

 

Table 7 Meningitis p – values of the four tests with various sample sizes after removing outlies 

 

Test 

Sample size 

Meningitis 

Z tSign            Wilcoxon 

15 7.891e
 – 04 

2.54e
 – 03

 7.812e
 – 03

 0.01154 

25 6.334e
 – 05

 1.095e
 - 04

 2.441e
 – 04

 1.212e
 – 03

 

>30 2.43e
 – 05

 2.621e
 - 06

 1.907e
 - 06

 5.497e
 – 05

 

The table 7 above shows that the p – values for the sample sizes of 15 is Z < t < Sign < Wilcoxon for sample 

sizes 25 and > 30 is Sign < t < Z < Wilcoxon. 

 

Table 8 Cholera p – values of the four tests with various sample sizes after removing outlies 

Test 

Sample size 

Cholera 

Z                                  t Sign          Wilcoxon 

15 0.8614 0.0701 4.883e
 – 04

 2.516e
 - 03

 

25 0.7374 0.1185 1.52e
 – 05

 3.198e
 – 04

 

>30 0.8005 0.1177 3.725e
 - 09

 2.695e
 – 05

 

Table 8 above shows that the p – values all sample sizes of 15, 25, > 30 is Z > t > Wilcoxon > Sign. 

 

IV. SUMMARY OF THE MAJOR 

FINDINGS: 
The study reveal that; 

1. The t – test has the highest p – values which is 

not powerful (not robust) which is very weak 

for all the sample size especially for the data 

with extreme values (outlies) for the diseases 

of COVID19, Measles, Meningitis and weak 

for Cholera. 

2. Wilcoxon Sign rank test has the highest p – 

values after t – test which is weak and not 

powerful (robust) for all the sample size 

especially for the data set with extreme values 

(outlies) 

3. Sign – test has the small p – values compare 

with and Wilcoxon Sign rank test with almost 

all the data set with and without extreme 

values for difference sample sizes 

4. Z – test has the smallest p – values compare 

with all of the above tests t, Sign and 

Wilcoxon sign rank test with almost all the 

sample sizes for various sample sizes of the 

three diseases of COVID19, Measles and 

Meningitis. It is the most powerful and robust 

except for cholera diseases data set. 

 

V. CONCLUSION: 
From the analysis of the data obtained in 

this study, one can safely conclude that the      Z – 

test is the smallest, most powerful and robust p – 

values among all the test especially for infectious 

diseases data that occur due to some change in 

atmospheres or environmental factors 

Recommendation: On basis of the result of this 

study the researcher made this recommendation 

that any data set that has the characteristics of 
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infectious diseases especially with extreme values 

(outlies) under difference sample sizes a robust and 

powerful test for it is Z – test. 
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